Acoustic language identification using fast discriminative training

نویسندگان

  • Fabio Castaldo
  • Daniele Colibro
  • Emanuele Dalmasso
  • Pietro Laface
  • Claudio Vair
چکیده

Gaussian Mixture Models (GMMs) in combination with Support Vector Machine (SVM) classifiers have been shown to give excellent classification accuracy in speaker recognition. In this work we use this approach for language identification, and we compare its performance with the standard approach based on GMMs. In the GMM-SVM framework, a GMM is trained for each training or test utterance. Since it is difficult to accurately train a model with short utterances, in these conditions the standard GMMs perform better than the GMM-SVM models. To overcome this limitation, we present an extremely fast GMM discriminative training procedure that exploits the information given by the separation hyperplanes estimated by an SVM classifier. We show that our discriminative GMMs provide considerable improvement compared with the standard GMMs and perform better than the GMM-SVM approach for short utterances, achieving state of the art performance for acoustic only systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Language Identification and Multilingual Speech Recognition Using Discriminatively Trained Acoustic Models

We perform language identification experiments for four prominent South-African languages using a multilingual speech recognition system. Specifically, we show how successfully Afrikaans, English, Xhosa and Zulu may be identified using a single set of HMMs and a single recognition pass. We further demonstrate the effect of language identification-specific discriminative acoustic model training ...

متن کامل

Discriminative training and channel compensation for acoustic language recognition

This paper describes the acoustic language recognition subsystems of Brno University of Technology (BUT) which contributed to the BUT main submission to the NIST LRE 2007. Two main techniques are employed in the subsystems discriminative training in terms of Maximum Mutual Information, and channel compensation in terms of eigenchannel adaptation in both, model and feature domain. The complement...

متن کامل

A New Phono-Articulatory Feature Representation for Language Identification in a Discriminative Framework

State of the Art language identification methods are based on acoustic or phonetic features. Recently, phono-articulatory features have been included as a new speech characteristic that conveys language information. Authors propose a new phono-articulatory representation of speech in a discriminative framework to identify languages. This simple representation shows good results discriminating b...

متن کامل

Time-Frequency Cepstral Features and Combining Discriminative Training for Phonotactic Language Recognition

The performance of the phonotactic system for language recognition depends on the quality of the phone recognizers. To improve the performance of the recognizers, this paper investigates the use of new acoustic features and discriminative training techniques for phone recognizers. The commonly used features are static ceptral coefficients appended with their first and second order deltas. This ...

متن کامل

A language model based approach towards large scale and lightweight language identification systems

Multilingual spoken dialogue systems have gained prominence in the recent past necessitating the requirement for a front-end Language Identification (LID) system. Most of the existing LID systems rely on modeling the language discriminative information from low-level acoustic features. Due to the variabilities of speech (speaker and emotional variabilities, etc.), large-scale LID systems develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007